Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256815

RESUMO

Identifying important parameters in crop models is critical for model application. This study conducted a sensitivity analysis of 23 selected parameters of the advanced rice model ORYZA-N using the Extended FAST method. The sensitivity analysis was applied for three rice types (single-season rice in cold regions and double-season rice (early rice and late rice) in subtropical regions) and two irrigation regimes (traditional flood irrigation (TFI) and shallow-wet irrigation (SWI)). This study analyzed the parameter sensitivity of six crop growth outputs at four developmental stages and yields. Furthermore, we compared the variation in parameter sensitivity on model outputs between TFI and SWI scenarios for single-season rice, early rice, and late rice. Results indicated that parameters RGRLMX, FRPAR, and FLV0.5 significantly affected all model outputs and varied over developmental stages. Water stress in paddy fields caused by water-saving irrigation had more pronounced effects on single-season rice than on double-season rice.

2.
J Sci Food Agric ; 102(1): 396-406, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34143896

RESUMO

BACKGROUND: Nitrogen and water are two major factors in rice production. Due to the lack of ample evidence and much uncertainty in field experiments, the coupling effects of water and nitrogen in paddy fields have remained debatable over recent years. RESULTS: A fine-calibrated ORYZA (v3) model was applied to simulate rice growth and development under different nitrogen (N) rates and irrigation regimes for a double rice-cropping system in South China. We designed a numerical experiment of 504 treatments, consisting of seven nitrogen rates (0-300 kg ha-1 ), eight irrigation thresholds (30-100%, presented as the percentage of saturated soil water content) and nine irrigation quotas (20-100 mm), and each treatment was simulated for 30 years. Yield varied greatly with different water-nitrogen conditions, particularly in the scenario of frequently alternate wetting and drying irrigation and low-N rates. The coupling effects had a negligible influence on water input and water loss, which were found to be sensitive only to the irrigation regime and rainfall distribution. Based on the results, the N fertilizer for early rice growing in the wet season is suggested as 150-200 kg ha-1 , and 200-250 kg ha-1 for late rice growing in the dry season. The irrigating threshold and irrigation quota for early rice are suggested as lower than 70% and 30-40 mm, respectively, and, for late rice, 70-80% and 40-60 mm. CONCLUSION: Remarkable water-nitrogen coupling effects were found in the paddy field, and integrative water-nitrogen management strategies were suggested for both early rice and late rice in South China. © 2021 Society of Chemical Industry.


Assuntos
Agricultura/métodos , Nitrogênio/metabolismo , Oryza/metabolismo , Água/metabolismo , Irrigação Agrícola/métodos , China , Fertilizantes/análise , Oryza/crescimento & desenvolvimento , Estações do Ano , Solo/química , Água/análise
3.
Environ Pollut ; 276: 116532, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676149

RESUMO

Wastewater reclamation and reuse for agriculture have attracted a great deal of interest, due to water stress caused by rapid increase in human population and agricultural water demand as well as climate change. However, the application of treated wastewater for irrigation can lead to the accumulation of pharmaceuticals and personal care products (PPCPs) in the agricultural crops, grazing animals, and consequently to human dietary exposure. In this study, a model was developed to simulate the fate of five PPCPs; triclosan (TCS), carbamazepine (CBZ), naproxen (NPX), gemfibrozil (GFB), and fluoxetine (FXT) during wastewater reuse for agriculture, and potential human dietary exposure and health risk. In a reclaimed wastewater-irrigated grazing farm growing alfalfa, it took 100-535 days for PPCPs to achieve the steady-state concentrations of 1.43 × 10-6, 4.73 × 10-5, 1.17 × 10-6, 1.53 × 10-5, and 7.38 × 10-6 mg/kg for TCS, CBZ, NPX, GFB, and FXT in soils, respectively. The accumulated concentration of PPCPs in the plant (alfalfa) and grazing animals (beef) ranged 2.86 × 10-7- 4.02 × 10-3 and 4.39 × 10-15- 6.27 × 10-7 mg/kg, respectively. Human dietary exposure to these compounds through beef consumption was calculated to be 1.67 × 10-18- 1.74 × 10-10 mg/kg bodyweight/d, much lower than the acceptable daily intake (ADI). Similar results were obtained for a 'typical' reclaimed wastewater irrigated farm based on the typical setup using our model. Screening analysis showed that PPCPs with relatively high LogD value and lower ratios of degradation rate (in soils) to plant uptake have a greater potential to be transferred to humans and cause potential health risks. We established a modeling method for evaluating the fate and human health effects of PPCPs in reclaimed wastewater reuse for the agricultural system and developed an index for screening PPCPs with high potential to accumulate in agricultural products. The model and findings are valuable for managing water reuse for irrigation and mitigating the harmful effects of PPCPs.


Assuntos
Cosméticos , Preparações Farmacêuticas , Poluentes do Solo , Poluentes Químicos da Água , Irrigação Agrícola , Agricultura , Humanos , Poluentes do Solo/análise , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...